

LCA calculations in (LT)DH systems

LowTEMP training package - OVERVIEW

	luction			
Intr	\sim \sim			\sim \sim
	\smile			\mathbf{v}_{11}

Intro Climate Protection Policy and Goals

Intro Energy Supply Systems and LTDH

Energy Supply Systems in Baltic Sea Region

Energy Strategies and Pilot Projects

Methodology of Development of Energy Strategies

Pilot Energy Strategies – Aims and Conditions

Pilot Energy Strategy - Examples

Pilot Testing Measures

CO₂ emission calculation

LCA calculation

Financial Aspects

Life cycle costs of LTDH projects

Economic efficiency and funding gaps

Contracting and payment models

Business models and innovative funding structures

Technical Aspects

Pipe Systems

Combined heat and power (CHP)

Large Scale Solar Thermal

Waste & Surplus Heat

Large Scale Heat Pumps

Power-2-Heat and Power-2-X

Thermal, Solar Ice and PCM Storages

Heat Pump Systems

LT and Floor heating

Tap water production

Ventilation Systems

Best Practice

Best Practice I

Best Practice II

Contents

- 1. Life Cycle Thinking
- 2. What is and why Life Cycle Assessment?
- 3. LCA methodology according to ISO14040-44
- 4. (LT)DH systems and LCA
- 5. Case study for (LT)DH using LCA

1. Life Cycle Thinking

Life Cycle Thinking: meaning

Systems thinking

- Standard Industrial model (linear)
- Life Cycle thinking (closed loop)

Figure 1: Product Life Cycle's General Scheme, author: Riga Technical University, Institute of Energy Systems and Environment

LC Thinking Benefits

- Aid Policy makers for better choice making
- Burden allocation on several actors
- Identification of cleaner production process
- Guide consumers towards sustainable development

Figure 1: Product Life Cycle's General Scheme, author: Riga Technical University, Institute of Energy Systems and Environment

2. What is and why Life Cycle Assessment?

- Scientific Approach: based on measurable and predictable attributes
- Focused on Impact: What is the net result to the environment?
- Throughout the Life Cycle: A "cradle-to-grave"... or "cradle-to-cradle" approach

Figure 2: cradle-to-grave approach within the Ecodesign context, author: Riga Technical University, Institute of Energy Systems and Environment

Life Cycle Assessment: Objective

- Definition of the in- and out-flows of materials and energy involved in a product system
- Further identification of the environmental critical points in terms of impact – i.e. «hot-spots»

Figure 3: in- and out-flows of materials and energy involved in a product system, , readapted from https://www.slideshare.net/majidaliakbarian/lca-of-the-persian-carpet-by-majid-aliakbarian [1]

Why Life Cycle Assessment?

- Comparative tool for sustainability and environmental peformances assessment
- Holistic approach avoiding burden shifting
- Allows Consideration of Trade-Offs
- Promotes Situation-Based Decisions
- Ranking methods

Characteristics of LCA

LCA is a way of structuring/organizing the relevant parts of the life cycle.

It is a tool to track performance.

It is a model of a complex reality reflecting:

- ✓ Lice cycle of a product,
- Their impacts, consequences on our health, the health of ecosystems, the availability of resources etc...

Each model is a simplification of reality.

3. LCA methodology according to ISO14040-44

Source: picture from MS Powerpoint database image's stock [3].

LCA methodology

ISO Standards

SO 14040

- Released in 1997
- Principles and framework
- Product system definition.

ISO 14044

- Came later in 2006
- Requirements and guidelines
- LCA Methodology is described

SO 14047, 14048, 14049

- Impact assessment
- Data documentation format
- Goal and scope definition and inventory analysis

LCA Methodology

ISO 14044:2006

Goal & Scope

Inventory analysis

LCA Steps

Impact assessment

Interpretation

Figure 4: ISO-Standards 14044:2006 scheme, Source: readapted from EN ISO 14044-2006 [4]

Goal and Scope

Goal:

- Purpose/Reasons to be carried out
- Intended application/decision to support
- Intended audience
- Whether the results will be used in comparative assertions released publicly

Scope:

- Definition of: studied product, the FU, system boundaries, impacts and assessment criteria, data requirements and allocation procedures.
- For DH systems the scope should evaluate the environmental performance within a pre-defined boundary including the energy source, the distribution network and the final demand.

Functional unit (FU):

- Provides a reference to which the inputs and outputs are related to ensure comparability of LCA results on a common basis.
- It is the quantified performance of a product system

Life Cycle Inventory (LCI)

Identify and quantify energy, water and materials usage and environmental releases (e.g., air emissions, solid waste disposal, waste water discharges).

1. Draw a flow chart and data collection

2. Model for Product system

3. Evaluate and report results

Life Cycle Impact Assessment

Modelling impacts of inventory results on the areas of protection through a number of environmental impact pathways

- Evaluates the significance of potential environmental impacts using from the Life Cycle Inventory
- Inventory data and emissions calculations are sorted in specific environmental impact categories
- The effect on the environment in each impact category is quantified through category indicators

Human Health
Natural Environment
Natural resources

Life Cycle Impact Assessment

consultants, May 2013" [5].

Figure 5: Life Cycle Impact Assessment according to ISO-Standards 14044:2006 scheme, Source: readapted from EN ISO 14044-2006 [4].

Weighting

Figure 7: single score in the Life Cycle Impact Assessment, Source: Ecodesign and LCA course, Riga Technical University, Institute of Energy Systems and Environment readapted from Henrikke Baumann, Anne-Marie Tillman. The Hitch Hiker's Guide to LCA: an orientation in life cycle assessment methodology and application, 2004 [6]

* A point (Pt) in the IMPACT 2002+ LCA methodology is the average impact caused by or on a person in a specific category during one year in Europe.

Life Cycle Interpretation (LCI)

Several elements are considered: identification of significant issues based on results, evaluation of consistency and sensitivity checks, and discussion of conclusions, limitations and recommendations.

Source: pictures from MS Powerpoint database image's stock [3].

Identification of significant issues, environmental impact or method

completeness check, sensitivity check, consistency check, etc.

Conclusions, limitations, recommendat ions

Application

4. (LT)DH systems and LCA

- Define an updated data inventory of all DH subsystems to be used as further benchmarks
- Clarify which subsystems and parts of a district heating system are affecting the overall environmental performance of the infrastructure
- Provide alternatives based on eco-design perspectives implementable in Municipality Energy strategies including SECAP
- Comparison with the business-as-usual DH scenarios (e.g. distribution network using natural gas)

- The LCA results may be of interest for:
 - energy planner and energy companies
 - engineers
 - DH operators
 - public officials and
 - decision makers
 - Researchers/LCA practitioners

Current state-of-art of LCA on DH

Author, year of study	Methodology	Subject of study	Software
Oliver-Sola, 2009	LCA ISO 14044	DH infrastructure with street section of 100 m, 10 blocks of 24 dwellings each	Gabi 4
Nitkiewicz, 2014	LCA ISO 14044	Low-temperature heating plant with electric heat pump, absorption heat pump and gas-fired boiler	SimaPro 7.3.2
Parajuli, 2014	LCA	District heat production in a straw fired CHP plant	SimaPro 7.3.3
lvner, 2015	LCA ISO 14044	Industrial excess heat in DH system	SimaPro software and ENPAC tool
Sandvall, 2017	TIMES	Small-town, medium-sized and a large DH system with specific characteristics in terms of DH supply technologies and fuel use	TIMES_UH model
Bartolozzi, 2017	LCA ISO 14040 and 14044	Heating and cooling in residential neighborhood of 1000 inhabitants (equivalent to 250 apartments), located in Tuscany, Italy	SimaPro 8.02
Havukainen, 2018	LCA ISO 14040 and 14044	Small-scale CHP plant fired by forest biomass, located in the Saimaanharju, Taipalsaari, Finland	GaBi 6.o
Pericault, 2018	LCA and LCC	System processes of five alternatives for water supply, sanitation and heating in a residential area in Gallivare, Sweden	Open LCA

How to build an LCA for DH system

How to build an LCA for (LT)DH system

To assess the total environmental performance of a DH systems over a lifespan of 25 years, including operation and maintenance activities.

Source: pictures from MS Powerpoint database image's stock [3].

Source: LowTEMP project, http://www.lowtemp.eu/wpcontent/uploads/2020/12/LCAreport-pilot-measure-Belava.pdf [8].

Goal and Scope
Definition
(ISO 14041)
Inventory
Analysis
(ISO 14041)
Impact
Assessment
(ISO 14042)

Source: ISO-Standards 14044:2006

scheme, Source: readapted from EN ISO

14044-2006 [4]

SECAP DH strategy to implement

Eco-Design Solution

Source: pictures from MS

Powerpoint database

image's stock [3].

5. Case study for (LT)DH using LCA

Examples from:

- Belava Parish in Gulbene Municipality
- Pilot Energy Strategy (Galgauska Parish in Gulbene)

GoA 4.2 –LCA scheme for Gulbene, Belava parish

PILOT MEAURE GULBENE

- Full reconversion of a former 3rd generation type DH distribution network to a novel Low Temperature DH system
- Old system: boiler house operating with wood logs fired boiler and distribution network not renovated
- **New system**: LTDH with a 0.2 MW new pellet boiler house, new distribution grid and the remote data monitoring system

GoA 4.2 –LCA scheme for Gulbene, Belava parish

Scenario	Characteristics
1	New DH system 90/60
2	New LTDH system 60/35 with solar PV panels
3	New LTDH system 6o/35
4	Old DH system 90/60

Figure 10: LCA's system boundaries for the Belava parish LTDH network.

FUNCTIONAL UNIT

Thermal energy supply to the heated area over a certain assumed lifetime of DH

Life Lice Inventory

Part of DH	Materials /	Assemblies / Processes		Amount	Unit				
New boiler house	Steel, low-	alloyed		113.3	kg				
	Steel, chromium steel 18/8		390.1	kg					
	Concrete, sole plate and foundation			4.2	m ₃				
	Sand			14	kg				
	Polyureth	New DH pipeline	Chromium steel pipe			10639.4	kg		
	Cast iron network	network	Polyurethane, rigid foam			816.8	kg		
	Brass		Polyethylene, low density, gra	anulate		2038.7	kg		
	Stone wo		Concrete block			2901	kg		
	Flat glass,	ail yl	Sand			323.5	kg		
	Alkyd pair		Cast iron			283	kg		
	Polyethyl								
	Exhaust a		Copper			15	kg		
	Ventilatio	or a o o o n di i i	Pitch		0/!	10	kg		
	Room-cor		Alkyd paint, white, without solvent, in 60 % solution state		% solution state	7.2	kg		_
	Exhaust a Ventilatio		Mastic asphalt S: Cable, three-cc C Concrete, sole C Metal working, B Extrusion, plas: Metal working, A Metal working.		Steel, low-alloyed	1		256.8	kg
	Ventilatio				Stone wool			1.2	kg
	Insulation				Cast iron			132	kg
	Intermoda				Copper			9	kg
	Furnace, ;				Brass Stone wool			61.6	kg
	Metal wo								
	Metal wor							1805.1	kg
	Metal wor			Alkyd paint, white, without water, in 60 % solution state			4.8	kg	
	Extrusion		Welding, arc, s	elding, arc. s		le, 20-pin, with plugs		15	kg
			Excavation, hy		Metal working, av	erage for steel product	manufacturing	256.8	kg
	aral a	г. т	accept and the second		Metal working, av	erage for metal produc	t manufacturing	132	kg

Source: M. Feofilovs et al., 2019 [9].

Figure 11: environment scores of the 4 scenarios, Source: M. Feofilovs et al., 2019 [9].

- Environmental improvements: decrease, of approximately 50%
- Highest contribution: operational phase
- The impact of the construction and maintenance phase is marginal
- Important decrease on:
 - Global warming potential (62%)
 - Ecosystem (54%)

Pilot Testing Measures

Click on the pins to learn more about the activities in the different municipalities.

Figure 12a: Belava (Gulbene Municipality) pilot testing measure,

http://www.lowtemp.eu/map/, [10]

Figure 12b: Belava (Gulbene Municipality) pilot testing measure, Source: https://www.google.lv/maps [11]

Currently, 3rd generation DH system is running in Gulbene municipality and its parishes. But, a more energy efficient performance by the development of a Low Temperature District heating network is intended.

Goal & Scope

- Assess the environmental impact of current DH system in Galgauska parish
- Assess the environmental impact of potential LowTemp DH system.
- © Functional Unit: the construction, operation and maintenance of DH system over an assumed time horizon to deliver the required heat demand.
- Analysis of results at midpoint categories using IMPACT 2002+ method and endpoint categories.

Gulbene City – System boundaries

FUNCTIONAL UNIT: functional unit is the operation and maintenance of DH system over an assumed time horizon for delivering the required heat demand of different Gulbene's parishes and municipality

Gulbene City – Life Cycle Inventory

							
NEW BOILER HOUSE Source: LowTEMP project, http://www.lowtemp.eu/wp					www.lowtemp.eu/wp-		
Material/Assemblies in SimaPro			Amount Unit	content/uploads/2020/12/LCA-rep		<u>va.pdf</u> [8].	
Steel, low-alloyed {GLO} market for APOS, U			113,3 kg	·	•		
Steel, chromium steel 18/8 {GLO} market for APOS, U			N	ew DH Pipelines			
Concrete, sole plate and foundation {CH} market for APOS, U	Mate	·			Amount Unit		
Sand {GLO} market for APOS, U		Steel, low-alloyed {GLO} market for APOS, U 10639,4 kg					
Polyurethane, rigid foam {GLO} market for APOS, U		, , , , ,		olyurethane, rigid foam APOS, U	816,8 kg		
Cast iron {GLO} market for APOS, U							
Brass (CH) market for brass APOS I			, granulate {GLO} m	urket jor APOS, O	2038,7 kg		
Stone wool {GLO} I market for stone wool LAPOS. U	Stone wool {GLO} market for stone wool APOS, U						_
Flat glass, Building renovation	N 4 - 1 - 1 - 1 / A 1 - 1	It as the Charle Dark	OPERAT	IONAL PHASE - Galgauska Scenario 1		A	11.21
Alkyd ngir orystyrene, extraded (GLO) market for 1 Aros, o	Material/Assemblies in SimaPro					Amount	
Polyethyle Adhesive mortar {GLO} market for APOS, U	Roundwood, from sustainable forest management, under bark {GLO} market for APOS, U					950	m3
Exhaust a Gypsum plasterboard (GLO) market for APOS, U							
Ventilatio Glazing, double, U<1.1 W/m2K, laminated safety glass {GLO						Amount	Unit
Room-con Alkyd paint, white, without solvent, in 60% solution state {R	Heat, district or industrial, other than natural gas {RoW} heat production, hardwood chips from forest, at furnace 300kW					926	MWh
	Electricity, medium voltage {LV} market for APOS, U					13,9	MWh
Ventilatio Epoxy resin, liquid {RER} market for epoxy resin, liq							
Insulation Glass fibre {GLO} market for APOS, U							
Glued laminated timber, for indoor use {RER} produ							
Processes Orthophthalic acid based unsaturated polyester resir			OPERATION	AL PHASE - Galgauska Greenest Scenario)		
Metal wol Steel, chromium steel 18/8 (RER) steel production,	Material/Assemb	olies in SimaPro		-		Amount	Unit
Wetarwor			RER} market for woo	od pellet I APOS. U		188	ton
Sand [CLO] market for LADOS II			, ,				
Polystyrono form slab for perimeter insulation (CLO)	Processes					Amount	Unit
Concrete normal (BoWI) market for LADOS II		dustrial other than	natural ags (RoM/N)	heat production, softwood chips from fo	rest at furnace 200kM/l	-	MWh
Acrylic filler {RER} market for acrylic filler APOS, U	Flectricity medius	m voltage SIVII mar	thet for I ADOC 11	rear production, softwood emps from jo	1636, 41 Julilace 300KVV 7		MWh
Ceramic tile {GLO} market for APOS, U	Liectricity, mediur	TI VOILUGE [LV] IIIUI	KELJUI AFUS, U			10,9	IVIVVII
33							

Gulbene City – Life Cycle Impact Assessment

Life Cycle Impact Assessment

Scenario 1

Scenario 2

Gulbene City – Life Cycle Impact Assessment

Life Cycle Interpretation

- A remarkable environmental impact reduction in all end point categories is achieved when moving from a 3GDH to a LTDH system
- Environmental burden is taken down in all impact categories for the lifespan of the project
- The Human health area is the one where most of the environmental benefit is received, with a total reduction of 86 %

Source: LowTEMP project, http://www.lowtemp.eu/wp-content/uploads/2020/12/LCA-report-pilot-measure-Belava.pdf [8].

References

[1] Lin C, Shei S. Heavy metal effects on fermentative hydrogen production using natural mixed microflora. Int J Hydrog Energy 2008;33:587–93. http://dx.doi.org/10.1016/j.ijhydene.2007.09.030.

[2] https://www.slideshare.net/majidaliakbarian/lca-of-the-persian-carpet-by-majid-aliakbarian.

[3] MS Powerpoint database image's stock.

[4] ISO, "ISO 14044:2006," Environ. Manag. - Life cycle assessement - Requir. Guidel. ISO 14044, Int. Organ. Stand., 2006.

[5] Ecodesign and LCA course, Riga Technical University, Institute of Energy Systems and Environment from "Advanced modelling in SimaPro- course material, Pre-consultants, May 2013".

[6] Henrikke Baumann, Anne-Marie Tillman. The Hitch Hiker's Guide to LCA: an orientation in life cycle assessment methodology and application, Professional Publishing House, 2004, 453 pages.

References

[7] Oliver-Solà, J., Gabarrell, X., Rieradevall, J., 2009a. Environmental impacts of the infrastructure for district heating in urban neighbourhoods. Energy Policy, 37, pp.4711–4719

[8] LCA study of the Pilot Energy Strategy for low temperature district heating system implementation in Gulbene municipality [Online]. Available at http://www.lowtemp.eu/wp-content/uploads/2020/12/LCA-report-pilot-measure-Belava.pdf

[9] M. Feofilovs et al., Life Cycle Assessment of Different Low-Temperature District Heating Development Scenarios: A Case Study of Municipality in Latvia. Environmental and Climate Technologies, 2019, vol. 23, no. 2, pp. 272–290

[10] Pilot Testing Measures [Online]. Available at http://www.lowtemp.eu/map/

[11] Google maps, Available at https://www.google.lv/maps

Contact

Riga Technical University

Faculty of Electrical and Environmental Engineering Institute of Energy Systems and Environment

Francesco Romagnoli, Dr.sc.ing., Prof. Fabian Diaz, M.sc., PhD student

Azenes iela 12/1-609 1048 Riga Latvia

E-mail: francesco.romagnoli@rtu.lv Tel:+371 67089943 www.rtu.lv

www.lowtemp.eu

