

Low Temperature and Floor Heating

Technical Introduction and Implementation

LowTEMP training package - OVERVIEW

Introduction	

Intro Climate Protection Policy and Goals

Intro Energy Supply Systems and LTDH

Energy Supply Systems in Baltic Sea Region

Energy Strategies and Pilot Projects

Methodology of Development of Energy Strategies

Pilot Energy Strategies – Aims and Conditions

Pilot Energy Strategy – Examples

Pilot Testing Measures

CO₂ emission calculation

LCA calculation

Financial Aspects

Life cycle costs of LTDH projects

Economic efficiency and funding gaps

Contracting and payment models

Business models and innovative funding structures

Technical Aspects

Pipe Systems

Combined heat and power (CHP)

Large Scale Solar Thermal

Waste & Surplus Heat

Large Scale Heat Pumps

Power-2-Heat and Power-2-X

Thermal, Solar Ice and PCM Storages

Heat Pump Systems

LT and Floor heating

Tap water production

Ventilation Systems

Best Practice

Best Practice I

Best Practice II

General function

Heating systems and heat distribution

Gerneral function of heating systems

- Providing heat for a building through various systems (heat-pump system; central heating system)
- Distribution and regulation of heat within a building
- Constant and balanced temperatures for health benefits (avoiding mold, air circulation)
- ➤ Comfortable surroundings

Heat distribution

- To access the heat/energy source a transfer station is installed in the building
- A carrier material transports the heat to the distribution where controlling and regulation take place
- From there the heat gets distributed to heaters installed in the rooms which then attain the demanded room temperature

System temperatures

- Many heating systems especially in old buildings run with 70 degrees and more These also have the highest heat losses
- Condensing boiler systems (with hot water preparation) have temperatures of 60/45 degrees
- Low temperature heating systems only need 35-45°C meaning they need a lower energy input and produce less CO₂

90/70°C (75/65°C)	60/45°C	35/45°C
Old buildings	Condensation boiler systems	Floor heating

Hydraulic adjustment

- The hydraulic adjustment is subject to funded housing constructions
- It ensures that the distribution of the heat transmitter is even and controllable
- Without this adjustment energy can be lost by overheating some rooms in order to adequately heat others
- The pressure resistance and flow rates are set in the heating system so that every comsumer achieves the desired performance

Figure 1: Hydraulic adjustment. Source: Intelligent Heizen [1]

Radiators

Floor heating

Thermal activation of building structure

Ceiling heating boards

Generally, a distinction is made between 3 different types of heaters:

- Radiators: besides convection, also provide a significant portion of their heat as radiation (sectional radiators, panel radiators)
- **Convectors**: heat is given off almost exclusively by convection. (e. g. fan coils)
- Surface Heating Systems: heat is emitted almost exclusively by radiation. (floor heating, ceiling radiant heating)

Radiators

- Radiators are the most common heaters and are usually arranged in a heating circuit
- They work best for heating small spaces, making them popular for housing and offices
- The installation is easy and due to the huge demand there are a lot of inexpensive options available
- Radiators can be effectively combined with condensing boilers or heat pump systems

Figure 2: Different radiators. Source: Viessmann [2]

Radiators work with either convection or radiation, a newer technology.

- Convection moves the hot air around
 - It can't reach all corners of the room
 - Dust leads to a dry feeling
 - Less comfortable and effective
- Radiation leads to a more even distribution of heat
 - Less energy is needed
 - Generally a more comfortable climate

Figure 3: Infrared radiator on the left, convection radiator on the right. Source: Heizkoerper-profi.de [3]

Low temperature radiator

- Are characterised by **low flow temperatures** (45 °C) and **flat and large** area radiators (heat radiation).
- Savings potential of up to 25 percent in primary energy compared to coventional radiators.
- Short warm-up time as well as quick reaction when switching on and off.

Figure 4: Low temperature radiator. Source: Viessmann [4]

Floor heating

- Floor heating is a low temperature heater and very energy-efficient
- The system works well with heat pump systems, it can run on renewable energies
- An even distribution of warm air leads to a comfortable room climate
- Underfloor heating can be integrated in both wet and dry screed

Figure 5: Floor heating mats with tubes. Source: ZEBAU GmbH [5]

Floor heating

- Floor heating works with warm water
- Open floor planning possible, as the system is integrated in the floor
- The tubes are easy to install but hard to access when the floor is finished
 - This leads to high maintenance costs
- Every room has it's own heating loop to optimize the temperatures
- All loops are connected to a heating circuit distributer that controls the system

Figure 6: Floor heating circuit distribution. Source: ZEBAU GmbH [5]

Floor heating – dry construction

- Dry screed plates are laid over the system plate in which the heating pipes are inserted.
- The subsoil must be load-bearing, dry and clean.
- Should only be exposed to maximum temperature of 45 °C

Figure 7: Dry construction. Source: Quick Tec [6]

Floor heating – wet construction

- The entire surface must be sealed without gaps (tub formation)
- The continuous operating temperatures must not exceed 55 degrees
- The pipe registers must not run through joints under any circumstances

Figure 8: Wet construction. Source: Franken Maxit Mauermörtel GmbH & Co [7]

Installation and circuits

Snail:

- dimpled plate
- tracker system pipe support mat

Figure 9: Laying form snail. Source: Rehau AG + Co [8]

Simple meander:

- nub plate
- tracker system pipe support mat
- dry system base plate
- renovation system

Figure 10: Single meander. Source: Rehau AG + Co [8]

Double meander:

- nub plate tracker system pipe support mat
- rennovation system

Figure 11: Double meander. Source: Rehau AG + Co [8]

Wall heating systems

- Are not placed in the concrete, but attached to inside of the outer wall with the aid of e.g. snapin systems.
- Pipes of the heat transfer medium are usually visible.
- The laying position of the pipes can be changed without much additional work.

Figure 12: wall heating systems. Source: Rehau AG + Co [9]

Thermal activation of building structure

- Thermal activation of building structure is a passive system
- Active components contain pipes inside the concrete of different components like floors, walls or ceilings
- This supports the natural effect of accumulating temperature by building mass (utilization of the inertia of the building mass)

Figure 13: installation of underfloor heating in concrete (thermal component activation). Source: InformationsZentrum Beton GmbH [10]

Thermal activation of building structure

- The passive support without input saves energy and money
- This system is also usable for cooling in summer
- The reaction time is very slow
 - Its only an addition to other heaters and can not stand on its own

Figure 14: thermal activation concept. Source: ZEBAU GmbH [11]

Heating ceiling boards

- Heating ceiling boards are a good option for large/high spaces like industry halls, sport halls, hospitals and other
- They work with radiation and heat up walls, floors and objects as well as the air
- The boards are easily installed and maintained, they leave space on the floor
- Other ceiling components like lighting or ventilation have to be considered

Figure 15: ceiling heating boards in hall. Source: Frenger UK [12]

Heating ceiling boards

- It is possible to use the ceiling boards for cooling as well
- The even distribution leads to a comfortable feeling
- Very efficient solution for otherwise hard to heat areas

Figure 16: Ceiling heating boards radiation. Source: Arbonia [13]

Pilot project Albertslund, Denmark

Approach:

- Comprehensive refurbishment, which included:
 - Roof, wall and basement insulation
- Floor heating systems with additional new radiator (two or three layer LT radiators) with blowers
- City LTDH system supplies at 57 °C to the heat exchanger of every house

Figure 17: Heating system in pilot project. Source: Albertslund Kommune [14]

3. Conclusion

Conclusion

- In general: Panel heating system make an important contribution to the efficient heating of buildings and can be installed on different surfaces
- Private buildings best option is floor heating
- Ceiling heating boards are good options for business, industry, public areas
- Support for these systems can be an active component

Final energy consumption buildings 2015

Figure 20: Energy consumption buildings in 2015 in germany. Source: dena [15]

References

- [1] Intelligent Heizen. https://intelligent-heizen.info/hydraulischer-abgleich/
- [2] Viessmann. https://www.viessmann.de/de/wohngebaeude/zubehoer/heizkoerper.html
- [3] Heizkoerper-profi.de. https://heizkoerper-profi.de/?attachment_id=1679
- [4] Viessmann. Planheizkörper Universal. https://www.viessmann.de/de/wohngebaeude/zubehoer/heizkoerper/planheizkoerper-universal.html
- [5] ZEBAU GmbH. Own photo.
- [6] Quick Tec. Fußbodenheizung verlegen. https://www.quicktherm-fussbodenheizung.de/verlegung/fussbodenheizung
- [7] Franken Maxit Mauermörtel GmbH & Co. https://www.maxit.de/unternehmen/aktuelles/das-beste-fuer-den-boden/
- [8] Rehau AG + Co. https://www.rehau.com/downloads/385694/technische-information-flaechenheizung-kuehlung-wohnbau.pdf
- [9] Rehau AG + Co. https://www.rehau.com/de-de/wand-deckensysteme

last reviewed on: 13.04.2021

References

- [10] InformationsZentrum Beton GmbH. https://www.beton-campus.de/2012/02/betonkernaktivierung-warm-und-kalt/
- [11] ZEBAU GmbH. Own illustration.
- [12] Frenger UK. https://www.frenger.co.uk/pdfs/modula-hp-v2.11.pdf
- [13] Arbonia. https://arbonia.hlk.digital/arbonia/prospekte-preislisten/de/decke/anti_pl_deg_deckenstrahlplatte_ch_de_o2.pdf
- [14] Albertslund Kommune. https://www.imp.gda.pl/ee_cities/prezentacje/pierwszy/2_Christian_Oxenvad.pdf
- [15] Deutsche Energie-Agentur (dena). dena-Gebäudereport. https://www.dena.de/fileadmin/user_upload/8162_dena-Gebaeudereport.pdf

last reviewed on: 13.04.2021

Contact

ZEBAU GmbH

Centre for Energy, Construction, Architecture and the Environment

Jan Gerbitz / Andreas Broßette / Merle Petersen

Große Elbstraße 146 22767 Hamburg Germany

E-mail: info@zebau.de Tel: +49 40 - 380 384 - 0

www.zebau.de

