

Methodology of Development of Energy Strategies

LowTEMP training package - OVERVIEW

Introduction			
	Intro	11161	'IAN

Intro Climate Protection Policy and Goals

Intro Energy Supply Systems and LTDH

Energy Supply Systems in Baltic Sea Region

Energy Strategies and Pilot Projects

Methodology of Development of Energy Strategies

Pilot Energy Strategies – Aims and Conditions

Pilot Energy Strategy – Examples

Pilot Testing Measures

CO₂ emission calculation

LCA calculation

Financial Aspects

Life cycle costs of LTDH projects

Economic efficiency and funding gaps

Contracting and payment models

Business models and innovative funding structures

Technical Aspects

Pipe Systems

Combined heat and power (CHP)

Large Scale Solar Thermal

Waste & Surplus Heat

Large Scale Heat Pumps

Power-2-Heat and Power-2-X

Thermal, Solar Ice and PCM Storages

Heat Pump Systems

LT and Floor heating

Tap water production

Ventilation Systems

Best Practice

Best Practice I

Best Practice II

Figure 1: EU Energy System Integration Strategy.

Source: Factsheet: EU Energy System Integration Strategy 08 July 2020. Available online:

https://ec.europa.eu/commission/presscorner/detail/en/fs_20_1295 [1]

Necessity

- Temperature lowering in heating network is complex process involving heat production, distribution and heat consumer
- Long-term planning is necessary to align all the system elements to lower heat carrier temperatures
- Puts the building modernization and infrastructure redevelopment into a meaningful order

Figure 2: 4th generation district heating concept

Main target groups

- Municipality
- Close cooperation with other stakeholders:
 - DH Network operator
 - Heat suppliers
 - Energy agencies
 - Building owners
 - Others

Figure 3: Main target groups for LTDH impelementation

Main steps for strategy development

Figure 4: Main steps for strategy development

Analyses of preconditions

Existing planning documents

- Strategies
- Action plans
- Investment plans

Technical preconditions

- Locations and performance of energy generation plants
- Heat distribution networks and district transfer stations
- Related network analyses

Urban preconditions

- Regional settlement structure and heat demand densities
- Location of potential construction and/or deconstruction residential areas

Technical preconditions

Figure 5: Waste heat mapping in Riga. Source: Report "Development of heat supply and cooling systems in Latvia" report. Available online: https://videszinatne.rtu.lv/wp-content/uploads/2021/02/DHCS_lv_1_nodevums_q_c.pdf [2]

Heating networks

Figure 6: Location of DH network in Riga Source: Ltd. "Rigas siltums" https://www.rs.lv/sites/default/files/page_file/rs_gada_parskats_2016_o.pdf [3]

- The main stakeholders who have a significant influence on the direction and rapidity of the local transformation because of their decision-making powers:
 - Energy suppliers
 - Housing companies
 - Private owners, investors etc...
 - Public authorities and public service companies (sewage companies, waste companies)

Consumers	Municipality Heating operator Ltd "Vidzemes
Building managers Industries	energija" Parish administrators Heat producers

Involvment

Figure 7. Example of particular stakeholder analysis

Institutional and organizational framework

- The institutional framework of DH Companies differs in each country:
 - Private stakeholders owned system
 - Municipalities owned system
 - Other government institutions owned DH system
 - Operator can be a non-profit organization
- Organization has different interests in DH system development in future.

Analyses of strategy pathway for transformation

- Two main directions for heat production:
 - local heat supply by individual heat solutions (called as "Thousand flowers" scenario)
 - heat supplied by DH
- The main aspect heat density of particular area.

Figure 8: Strategical pathway for transformation

Analyses of strategy pathway for transformation

Building heat requirements

Existing buildings

Network temperature optimization programs

Regulation and adjustment of substations

Temperature can be lowered to the certain point

Mixed building areas

Energy cascades

Regulation and adjustment of substations

Temperature can be lowered to the certain point

New and renovated buildings

Low heat requirements

Proper heating elements

Lower supply temperature possible

Example of transformation paths in Gulbene

Initial district identification

- Main criteria that can be used:
 - the energy efficiency potential
 - renewable energy integration potential
 - the building and heat consumption density
 - potential to increase the density by integrating new heat consumers or equip extra appliances within the DH
 - the identification of surplus heat from industries that can be integrated into the DH system
- In priority should be the buildings, heating networks or systems that should have renovation or modernization

Example of technical alternatives

Scenario	Technical solutions		
1	 One woodchip boiler house provides the heat 1.5 and 3.5 MW boilers installed Actual operating temperature mode (90°C-70°C) PV solar panels Forecasted slight heat consumption increase due to new consumers 		
2	 One woodchip boiler house provides the heat 1.5 and 3 MW boilers installed Reduced operating temperatures (70°C-45°C) PV solar panels Forecasted slight heat consumption increase due to new consumers 		
3	 Base load from indutrial waste heat (1 MW) Additional heat from woodchip boiler house (3.5 MW) Reduced operating temperatures (70°C-45°C) Forecasted slight heat consumption increase due to new consumers 		

Figure 9: Schematic comparison of technical alternatives

Data collection

- Produced heat [MWh per year]
- Fuel consumption [natural units or MWh]
- Fuel's lowest calorific value [MWh/natural unit of fuel (tones, m³ etc.)]
- Consumed heat energy for heating and hot water generation [MWh per year]
- Heat losses [MWh per year]
- Maximum temperature and return temperature [°C]
- Length of the heat pipe [m]
- Average diameter of the heat pipe [mm]

Example of scenario analyses

	Existing situation	Scen. 1	Scen. 2	Scen. 3
Installed boiler capacity [MW]	n/a	1.5+3.5	1.5+3	3.5
Volume of accumulation tank [m³]	n/a	10	10	10
Flue gas condenser capacity [MW]	n/a	1.5	2.4	2.2
Length of new heating networks [m]	n/a	681	681	681
Investments [k € per year]	n/a	3516	3486	2675
Production costs [k € per year]	750	613	584	631
Cost of fuel [k € per year]	181	520	464	318
Cost of purchased heat [k € per year]	526	n/a	n/a	211
Electricity costs [k € per year]	43	81	97	81
Maintenance costs of flue gas condenser [k € per year]	n/a	13	23	21
Personnel costs [k € per year]	14 4	173	173	14 4
Other costs and profit share [k € per year]	47 2	47 2	472	47 2
Total maintenance costs [k € per year]	1366	1434	1403	1381
Specific cost of heat sold [€ / MWh]	55.71	56.18	54.96	54.09

SWOT Analysis – Example

Alternative 1 Alternative 2

1	
Strength	Weaknesses
 Use of local and renewable heat source - biomass Lower energy source costs Lower heat losses Increased efficiency in flue gas condenser 	 Higher investment costs for biomass boiler Heating unit adjustment
Opportunities	Threats
 EU and government support for alternative energy source Biomass price stability 	 Decrease of biomass quality Consumer unwillingness to cooperate Domestic hot water preparation

	/ (ICCITICATIVE 2				
	Strength		Weaknesses		
	Low investment costs Low labor costs High boiler efficiency	•	Use of fossil fuel High fuel costs High environmental taxes Higher heat losses		
	Opportunities		Threats		
•	Use of existing natural gas infrastructure	•	Unstable fuel costs Increased energy and environmental taxes		

Evaluation of implementation conditions

- In accordance with other plans, programs and instruments by providing necessary synergy
- Clarify the responsibilities, priorities, guidelines and conflict management
- Should be flexible

Reflection and learning

- Indicators that can be monitored to obtain clear overview of the results:
 - Energy requirements for space heating and DHW [kWh]
 - Specific energy consumption parameters [kWh/ inhabitant; kWh/m² etc...]
 - Output of generation plants [kW/inhabitant]
 - Storage capacity [kW]
 - Efficiencies of technical installations
 - Number and scope of building modernization measures
 - Type and volume of energy used [kWh per year]
 - CO2 emissions [ton per year]
 - Heat price developments [€/kWh]
 - Length of heat supply networks [km]
 - Heat supply flow temperature [°C]

Conclusions

- Development of long-term strategy is crucial for successful implementation of low temperature district heating
- Analyses of preconditions allows to identify most suitable future transformation pathway for particular DH system
- More detailed technical analyses is necessary for particular district to compare different technical alternatives regarding energy source, heat distribution and energy consumption
- SWOT analyses can be carried out to evaluate main strengths, weaknesses, opportunities and threats for each analyzed LTDH alternative solutions
- It is important to monitor the main indicators of implemented pilot cases (fuel and energy consumption, heat losses, heat production efficiency etc.) to drive conclusions for future projects

References

[1] Factsheet: EU Energy System Integration Strategy o8 July 2020. Available online: https://ec.europa.eu/commission/presscorner/detail/en/fs_20_1295

[2] Report "Development of heat supply and cooling systems in Latvia" report. Available online: https://videszinatne.rtu.lv/wp-content/uploads/2021/02/DHCS_lv_1_nodevums_g_c.pdf

[3] Ltd. "Rigas siltums" https://www.rs.lv/sites/default/files/page_file/rs_gada_parskats_2016_o.pdf

Contact

Riga Technical University

Faculty of Electrical and Environmental Engineering Institute of Energy Systems and Environment

Francesco Romagnoli Dagnija Blumberga

Azenes iela 12/1-609 1048 Riga Latvia

E-mail: francesco.romagnoli@rtu.lv Tel:+371 67089943 www.rtu.lv

www.lowtemp.eu

