

Ventilation Systems

Technical Introduction and Implementation

LowTEMP training package - OVERVIEW

	luction
Introc	lliction

Intro Climate Protection Policy and Goals

Intro Energy Supply Systems and LTDH

Energy Supply Systems in Baltic Sea Region

Energy Strategies and Pilot Projects

Methodology of Development of Energy Strategies

Pilot Energy Strategies – Aims and Conditions

Pilot Energy Strategy - Examples

Pilot Testing Measures

CO₂ emission calculation

LCA calculation

Financial Aspects

Life cycle costs of LTDH projects

Economic efficiency and funding gaps

Contracting and payment models

Business models and innovative funding structures

Technical Aspects

Pipe Systems

Combined heat and power (CHP)

Large Scale Solar Thermal

Waste & Surplus Heat

Large Scale Heat Pumps

Power-2-Heat and Power-2-X

Thermal, Solar Ice and PCM Storages

Heat Pump Systems

LT and Floor heating

Tap water production

Ventilation Systems

Best Practice

Best Practice I

Best Practice II

General function

Different heat recovery systems

Ventilation systems instead of window ventilation

- Provision of fresh air \rightarrow increased quality of indoor air \rightarrow increased occupant's well-being
- Centralized / decentralized ventilation systems -> management / monitoring of air exchange
- Possibility of heat recovery → significant energy saving potentials

Common natural and mechanical ventilation systems

Natural ventilation: Cross-ventilation with open windows

Natural ventilation: Stack effect with open windows

Mechanical ventilation: Balanced central supply and extract

Figure 1: Ventilation systems. Source: Velux Group [1]

Centralised and decentralised ventilation systems

Figure 2: Centralised and decentralised ventilation systems. Source: Dierker Luft und Klima GmbH [2]

General function of heat recovery

Winter

cold outside air is preheated by the warm extracted indoor air and filtered

Summer nights

cool outside air is directed indoors via a bypass

Figure 3: Seasonal situations of heat recovery systems. Source: Atlantics Australasia [3]

Main components of ventilation systems with heat recovery

- Fresh air intake & exhaust air outlet protected by screen
- Heat exchange core different systems available
- Fresh air outlet & stale air intake supported by circulation fans
- Filters at air intakes:
 pollen and dust can be filtered
- Drain for condensate
- Control unit

Figure 4: Components of a heat recovery ventilator. Source: One House Green [4]

Recuperative heat recovery

- Heat is directly transferred from one airstream to another via a metal sheet
- No connection between the two airstreams
 → no contamination

Figure 5: Plate heat exchanger. Source: NFAN [5]

Plate heat exchanger

- Package of thin metal/plastic sheets with small spacing between them
- Warm and cold airstream are alternately directed through these spaces
- Heat is transferred from one airstream to the other
- High efficiency rates

Regenerative heat recovery

- Heat is transferred to a solid or liquid intermediate medium
- Medium transfers the heat to the cold outdoor air
 - → Heat is buffered and then later released

Examples

- Rotary thermal wheels
- Heat pipes
- Circuit connected system

Rotary thermal wheels

- Wheel turns 5-20 times per minute
- Consists of metal sheets→ thermal storage mass
- Heat is tranferred from extract air to the wheel and then the outside air
 → preheating the supply air

Figure 6: Rotary thermal wheel. Source: Klingenburg USA [6]

Heat pipes

- Heat pipes are filled with a refrigerant liquid
- Warm extract air functions as the heat source
 heat leads to evaporation of refrigerant liquid
- Vapour rises to the other end of the heat pipe
- Cold outdoor air passes this end of the heat pipe
 → vapour liquifies and releases the heat
- Supply air is preheated and refrigerant liquified
 → cycle starts again

Figure 7: Principle of heat pipes. Source: Cooliance [7]

Circuit connected system

- Airstreams are separated and can be installed separately
- Heat transfer medium is circulating in a pipe system
- > heat is transferred from the warm exhaust air to the medium and then to the cold outside air
- → the same mechanism works for cool summer nights precooling the supply air

Advantages and disadvantages of different heat recovery systems

Figure 8: Heat recovery systems. Source: KLAISS GmbH Apuso Lüftungstechnik [8]

HEAT RECOVERY SYSTEM	ADVANTAGES	DISADVANTAGES
Plate heat exchanger	No contaminationFixed parts, high reliabilityHigh heat transfer coefficient	Limited to two airstreamsCondensation
Rotary thermal wheel	Compact designHigh efficiency	Energy input requiredCross contamination of airstreams
Heat pipes	 Heat recovery in two directions possible Compact design Fixed parts, high reliability 	 Requires close localization of air streams Moving parts, maintenance necessary
Circuit connected system	Airstreams can be separateNo contamination	 Pumps are required to move the liquid Rather low efficiency Difficult to integrate

Ventilation system with an earth heat exchanger

- Earth to air:
 - outside air is directed in a pipe 1,5m-2m beneath the ground
 - → air is preheated/precooled due to constant ground temperature
- Earth to medium to air:

heat exchange medium is directed in pipes 2m beneath the ground

- → medium is preheated/precooled due to constant ground temperature
- → heat is transferred from medium to cold outdoor air
- → the same mechanism works for cool summer nights (precooling)

Heat recovery and heat pumps

- Hot water heat pump:
 heat pump extracts warm air from building
 - → heats up drinking water
 - → connected water storage system has to be available
- Air heating and heat pump: heat pump extracts warm air from building
 - → heats up supply air
 - → heat pump can heat up the air so no additional heating is required

Exhaust air heat pump

A: warm room air is drawn into the duct system

B: warm room air is led to F 730

C: After passing F730, the room air is discharged to the outside, which lowers the air temperature

D: F730 supplies the building with service water and heating heat

E: Outside air is fed into the building and heated as required

F: Air is led from rooms with outdoor valves into rooms with exhaust air valves

Figure 9: Functional principle of exhaust air heat pump. Source: NIBE Systemtechnik GmbH [9]

Example Plant (NIBE 730/NIBE 750)

- Specially developed for modern houses with low heating requirements
- Basic units combine heating, domestic hot water and controlled domestic ventilation and heat recovery
- Used in single-family houses and apartment buildings with a living area between 75 and 200 m²
- Basic unit does not require more space than a household appliance

Figure 10: NIBE 730/NIBE 750. Source: NIBE Systemtechnik GmbH [10]

Planning and design

Examples decentralised ventilation units/systems

Planning and design - Unit size and distribution box

- The unit size is based on air flow volume and design
- Operation planned at 75% of max. -> system resistance
- Distribution box made out of metal sheets
- Mounted on the walls, under the ceiling, in ceiling or on the floor

Planning and design - Supply and exhaust air pipe system

- Installation in the concrete ceiling (1)
- Laying in the shaft (2)
- Installation on the floor (3)
- Installation under the ceiling (4)
 in frame construction

(3)

(4)

Figure 11: Planning and design. Source: Vallox GmbH [11]

Planning and design - Silencers

- Ventilation generates noise, that is transferred via the ductwork
- To prevent noise pollution silencers are installed in the pipe system
- German DIN standard requires <30 dB in recreation rooms
- Dense residential development can call for additional silencers

Planning and design - Diffusers

- The air outlets are to be installed in an accessible way for cleaning, maintenance
- Can be installed in walls or ceilings, designed to allow good air flow through the room
- Supply Air:
 - Not behind curtains, cupboards or other furniture, not directly above living area (bed, sofa)
- Exhaust air:
 - As high as possible under the ceiling, not directly above radiators
 - In close proximity to odour and moisture sources (toilet, shower)
 - Kitchen fumes are extracted with filters to prevent grease pollution

Decentralised fan (Inventer) with heat recovery

- Two airflows pass through a copper heat exchanger located inside the working module
- Two airways are separated from each other, both inside the working module and the "input-output"
- Installation of filters is possible

Figure 12: Prana ventilation system with heat recovery. Source: Ecostream [12]

Decentralised ventilation unit with heat recovery

- Components:
 ceramic heat acumulator, reversing fan
 double air deflectors for straightening the air flow,
 filters for all hygenic requirements,
 lockable inner panel, powder coated,
 driving rain-proof weather protection hood
- Inner ceramic core stores the heat
- Direction change after 70 seconds of rotation
- Ventilation system is operated by appropriate controllers

Figure 13: Prana ventilation system with heat recovery, source: inVENTer GmbH [13]

Decentralised ventilation systems for window reveals

- Polish company EWTG developed a thermal ventilation system for window frames
- Decentralised ventilation, can be added to existing buildings
- Allows the supply air to mingle with the inside air
 - -> preheated air
- Has a patented valve that allows constand air flow regardless of athmospheric conditions

Decentralised ventilation systems for window reveals

- Is particularly suitable for installation on exterior walls with insulation, e. g. as part of a building renovation
- The wall opening must be in the immediate vicinity of a window, as the air inlet and outlet is through a ventilation grille in the window reveal
- The flat duct is laid inside the insulation towards the window reveal

Figure 14: Decentralised ventilation system for window reveals. Source: inVENTer GmbH [14]

Decentralised ventilation systems for window reveals

- Aesthetic integration of the external and exhaust air ducting on the house facade
- Excellent sound insulation values
 - Reduces the intrusion of external noise and expands the planning possibilities
- Perfectly suited for inner-city living areas

Figure 15: Decentralised ventilation system for window reveals. Source: Zehnder Group Deutschland GmbH [15]

Conclusion

- Ventilation systems enable the controlling and monitoring of the air exchange of a building.
 This way the air can also be filtered.
- Integrated heat recovery uses the energy of the exhaust air to preheat or precool the fresh supply air. This can result in significant energy saving potentials and economical benefits.
- The choice of the appropriate system depends on the situation and must be carefully chosen to ensure an ideal utilization.

References

- [1] Velux Group. Ventilation and ventilation systems. https://www.velux.com/what-we-do/research-and-knowledge/deic-basic-book/ventilation/ventilation-and-ventilation-systems
- [2] Dierker Luft und Klima GmbH. https://www.dierker.de/fag/
- [3] Atlantics Australasia. https://atlantics.com.au/optimocosy-ventilation/
- [4] One House Green. http://onehousegreen.com/heat-recovery-ventilator/
- [5] Northern Fan Supplies (NFAN). https://www.nfan.co.uk/what_are_heat_recovery_systems
- [6] Klingenburg USA. Rotary Heat Exchangers. http://www.klingenburg-usa.com/knowledge/rotary-heat-exchangers/
- [7] Cooliance. http://www.cooliance.com/NA/Technologies/Heat-Pipes/index.php
- [8] KLAISS GmbH Apuso Lüftungstechnik. https://www.apuso.de/lueftungstechnik/waermerueckgewinnung/

Last reviewed on: 13.04.2021

- [9] NIBE Systemtechnik GmbH. https://www.nibe.cz/grafika
- [10] NIBE Systemtechnik GmbH. Produktflyer NIBE F730/F750. https://www.nibe.eu/assets/documents/20730/639703-1.pdf
- [11] Vallox GmbH. Planungshandbuch "Lüftungsspezialisten". https://vallox.de/Service/Downloads/Unterlagen?selection=handbuch
- [12] Ecostream. The working principle of "Prana" recuperator. https://ecostream.org.uk/decentralised-mechanical-ventilation-with-heat-recovery-dmvhr/
- [13] inVENTer GmbH. https://www.inventer.de/produkte/lueftungsgeraete/inventer-iv14r/
- [14] inVENTer GmbH. https://www.inventer.de/produkte/lueftungsgeraete/inventer-iv14r-corner/
- [15] Zehnder Group Deutschland GmbH. https://www.zehnder-systems.de/csy-neuheit-erweiterungen-dezentral

Last reviewed on: 13.04.2021

Contact

ZEBAU GmbH

Centre for Energy, Construction, Architecture and the Environment

Jan Gerbitz Andreas Broßette Merle Petersen

Große Elbstraße 146 22767 Hamburg Germany

E-mail: info@zebau.de Tel: +49 40 - 380 384 - 0

www.zebau.de

