

Pipe Systems

Installation methods & pipe varieties in District Heating

Basic facts about DH pipe systems

- Water temperatures of DH-systems range usually from 80°C to 120°C of supply and 30 to 70°C of return water (temperature levels depend on the used system and other conditions like outside temp., etc.)
- LowTEMP-network temperature levels range up to 80 °C supply temperature
- Heat losses of pipe systems range from approx. 5 to 10 % in proportion to the produced heat
- Type of pipes that are mostly used in DH- networks: plastic jacket pipes (PJP); Steel jacket pipes (SJP); FLEX-pipes

2 DH-network structure/design:

- Flow and return line are dimensioned symmetrically
- shortest length in comparison to other network designs
- usually used in small heat networks with one central heat source

- distribution pipes

 facilitates the integration of other
- heat sources

 During maintenance, it is possible
- to ensure partial supply
 Combinations of radial and ring networks are possible

- Common version of the ring network
- distribution pipes and heating units are linked together in operation
- Ring with cross connections

3 Installation methods & pipe designs

- biggest part of DH-piping systems is usually installed underground
- sometimes huge **aboveground transport lines** can be found next to train tracks, bridges and very seldom also overland
- For underground lines two main installation methods are used:
 - Channel or in-duct laying methods
 - Trench laying methods

3.1 Channel or in-duct laying methods

- reliable protection against mechanical damages
- support against unwanted moisture
- but very cost intensive
- method is only being applied in very special cases nowadays
- shape of the channel can vary

Source: AGFW

3.2 The trench laying method

- trench laying methods are much more common than the construction of hooded-systems
- important that the pipes are implemented in frost-free depths
- risk of frost damaging the pipes is normally very low due to heat losses
- installation base or bedding layers are necessary to avoid pipe damages
- drainage of the trench must be ensured
- top laying sand bed is also called the **friction layer** that must provide sufficient and stable resistance to axial pipe movement (implementation of adhesion zones necessary)

Cross-section through a DH-trench laying system (Source: AGFW)

3.3 Pipe designs

- Steel jacket pipes-systems
 - Reliable protection against external stresses versatile applications
 - Thermal insulation per fiber insulation material and/or vacuum
 - o Medium temperatures up to 400°C
- Plastic jacket pipe-systems
 - Minimum lifetime > 30 years
 - Water- and damage-proof against external stresses
 - Good thermal insulation
 - o Constant operation temp. ≤ 120°C
- Both operate with steel and plastic medium pipes

