

Pipe Systems

Installation methods & pipe varieties in District Heating

LowTEMP training package - OVERVIEW

ntrod	uction
	UCLIUII

Intro Climate Protection Policy and Goals

Intro Energy Supply Systems and LTDH

Energy Supply Systems in Baltic Sea Region

Energy Strategies and Pilot Projects

Methodology of Development of Energy Strategies

Pilot Energy Strategies – Aims and Conditions

Pilot Energy Strategy – Examples

Pilot Testing Measures

CO₂ emission calculation

LCA calculation

Financial Aspects

Life cycle costs of LTDH projects

Economic efficiency and funding gaps

Contracting and payment models

Business models and innovative funding structures

Technical Aspects

Pipe Systems

Combined heat and power (CHP)

Large Scale Solar Thermal

Waste & Surplus Heat

Large Scale Heat Pumps

Power-2-Heat and Power-2-X

Thermal, Solar Ice and PCM Storages

Heat Pump Systems

LT and Floor heating

Tap water production

Ventilation Systems

Best Practice

Best Practice I

Best Practice II

Content

- Introduction to this module
- General overview of Pipe systems & DH-infrastructure
 - Functional classification of DH-pipe systems
 - Classification of DH-systems by grid levels
- Installation methods & pipe designs
- Heat transport medium
- Simplified EXAMPLE of Network planning & heat estimation

Basic facts about DH pipe systems

- water temperatures of DH-systems range usually from 80°C to 120°C of supply and 30 to 70°C of return water (temperature levels depend on the used system and other conditions like weather, etc.)
- LowTEMP-network temperature levels range up to 80 °C supply temperature
- **Heat losses** of pipe systems range from approx. 5 to 10 % in proportion to the produced heat
- Type of pipes that are mostly used in DH- networks: plastic jacket pipes (PJP);
 Steel jacket pipes (SJP); FLEX-pipes

Source: pixabay

European wide DH-customers can be estimated on approx. 60 million citizens with an increasing number in future! (Quote: EuroHeat & Power)

Heat network trends to lower distribution temperatures and higher efficiency Source: ICAX [1]

Heat generating technologies within DH-systems

- DH-systems are able to integrate different heat sources within one heat network
- DH-systems could therefore help to integrate more and more renewables within the heating sector
- Possible heat sources:
 - Heating plants
 - Thermal power stations
 - Combined heat and power units (CHP)
 - Waste heat integration from industrial processes
 - Heat utilization from waste incineration
 - Solid & liquid biomass
 - Large heat pumps
 - Geothermal heating units
 - Solar thermal systems, etc.

Source: pixabay

General overview of pipe systems & DH-infrastructure

Functional classification of DH-pipe systems

- Piping systems of DH-networks can be roughly classified in following categories/terms:
 - Transport pipes
 - Distribution pipes
 - Connecting pipes (to consumer substation)
- **EXAMPLE:** waste heat utilization with a DH-system & network structure

General overview of pipe systems & DH-infrastructure

Classification of DH-pipe systems by grid levels:

Dual-pipe system

closed district heating grid

3-pipe system

- 1st flow line used for heating purposes
- 2nd flow line (θ = const.) used for water and air heating
- High installation costs
- More complex operation

4-pipe system

- Two overlapping dual-pipe systems
- management of specific heat demands and supply
- High installation costs
- Usage in special cases only

General overview of pipe systems & DH-infrastructure

DH-network structure/design:

Radial network

- Flow and return line are dimensioned symmetrically
- shortest length in comparison to other network designs
- usually used in small heat networks with one central heat source

Ring network

- circular connected main distribution pipes
- facilitates the integration of other heat sources
- During maintenance, it is possible to ensure partial supply
- Combinations of radial and ring networks are possible

Mesh network

- Common version of the ring network
- distribution pipes and heating units are linked together in operation
- Ring with cross connections

General overview about Pipe systems & DH-infrastructure

The size of the system can be characterized by the following parameters:

- Length of the piping system (trench length) [m, km]
- Number of substations
- Number of connected consumers
- Amount of investment costs [M€]
- Complexity (e.g. number of heat generators, connection points, grid levels)
- Distributed energy (sold heat) [MWh, GWh, TWh]
- Installed heat generation capacity [MW, GW]
- Spatial coverage of the district [km²]

(Source: Upgrade-DH, 2019 [2])

Aboveground lines

Underground lines

Source: all AGFW

Installation methods

- biggest part of DH-piping systems is usually installed underground
- sometimes huge aboveground transport lines can be found next to train tracks, bridges and very seldom also overland
- For underground lines two main installation methods are used:
 - Channel or in-duct laying methods
 - Trench laying methods

Examples of in-duct laying methods & trench laying methods (Source: AGFW)

Channel or in-duct laying methods

- reliable protection against mechanical damages
- support against unwanted moisture
- **but** very cost intensive
- method is only being applied in very special cases nowadays
- shape of the channel can vary

Semi-circular hooded channel, rectangular hooded channel and **double angle channel** are most common systems for in-duct laid pipelines (Source: AGFW)

Cross section of a hooded DH-channel

Summary of channel or in-duct laying methods

Advantages	Disadvantages
 Sturdiness and safety against external influences (e.g. mechanical, ground and surface water) 	Expensive installation
 High service life expectancy (70 years) 	Time-consuming construction
Shafts allow inspection	lot of space is needed for construction
 Point of damage can be localized sufficiently enough 	 Water-resistance against (ground and surface) water is difficult
 Good ventilation from shaft to shaft 	

Source: AGFW

The trench laying method

- trench laying methods are much more common than the construction of hooded-systems
- important that the pipes are implemented in frost-free depths
- approximately below one meter trench depth for Central Europe
- risk of frost damaging the pipes is normally very low due to heat losses
- installation base or bedding layers are necessary to avoid pipe damages
- drainage of the trench must be ensured
- top laying sand bed is also called **the friction layer that must provide sufficient and stable resistance to axial pipe movement** (implementation of adhesion zones necessary)

Installation of plastic-jacket pipes with the trench laying method (Source: AdobeStock Image)

The trench laying method

Cross-section through a DH-trench laying system (Source: AGFW)

Installation of plastic-jacket pipes with the trench laying method (Source: AdobeStock Image)

Pipe designs

- Steel jacket pipe-systems
 - Reliable protection against external stresses versatile applications
 - Thermal insulation per fiber insulation material and/or vacuum
 - Medium temperatures up to 400°C
- Plastic jacket pipe-systems
 - Minimum lifetime > 30 years
 - Water- and damage-proof against external stresses
 - Good thermal insulation
 - Constant operation temp. ≤ 120°C
- Both operate with steel and plastic medium pipes

Pipe designs

- basic structure of commonly used piping technologies two concentrically placed pipes that are separated by an insulating layer
- outside casing from plastic or steel functions as protection against moisture and corrosion of the inner medium pipe
- usually are equipped with additional wires inside the insulation, which could help to detect leakages

casing pipe insulation

medium pipe

LowTEMP

Overview of different PJPs

PJP pipe with a steel medium pipe
(Source: D. Rutz) [3]

Varieties of flexible PJPs – so called PEX-pipes - with a plastic medium pipe (Source: Logstor / Uponor)

One example of sleeve connections

- 1 Medium pipe
- 2 Weld connection
- 3 Factory produced PU foam
- 4 On-site produced PU foam
- 5 PE-jacket pipe
- 6 PE-X-shrink sleeve
- 7 Shrink tape with hot melt glue

Heat transport medium

- DH piping system is also influenced by the quality of the heat transport medium which is described in AGFW FW 510 (2018)
- impact on the operation lifetime of the piping network
- influences the rate of corrosion for the steel made medium pipe
- Bad quality could cause deposits in the pipelines or valves

For the application of water in DH two operating modes can be classified:

saline circulation water and low-salt circulation water

The criteria for the assessment of DH water are:

- Electrical conductivity at 25°C
- Appearance
- pH value at 25°C
- Oxygen
- Sum of alkane earth (hardness)
- Iron
- Copper
- Sulphide
- Sulphate

EXAMPLE: simplified case of network planning

• Example: A city plans to build a new residential area and the nearby cogeneration plant has free capacities to supply the new district. A network for district heating has to be planned between the cogeneration plant and the residential area (blue).

Source: Dipl.-Ing. Fastabend - RheinEnergie

EXAMPLE: simplified case of network planning

<u>1st Step:</u> Determine heat demand (following DIN EN 12831)

- Usually the city or the investor have information about the heat demand
- Gross floor area (GFA) allows a good estimation of the heat demand

Experienced heat demand values

Single-family house

- Terrace house 8-10 kW (without hot water supply)
 - 15-18 kW (with hot water supply)
- Freestanding 15-20 kW (without hot water supply)
 18-25 kW (with hot water supply)

Specific heat demand

- House development 40-60 W/m² GFA
- Office use 60-80 W/m² GFA
- Commercial area 60-80 W/m² GFA
- Special use ≤ 100 W/m² GFA

EXAMPLE: simplified case of network planning

Calculation of heat demand: 3.720 kW

2nd Step: Determine further parameters

- Network operation
- Pressure loss

3rd Step: Define first lines

4th Step: Dimension pipes

Source: Dipl.-Ing. Fastabend - RheinEnergie

References

- [1] ICAX. https://www.icax.co.uk/Fifth_Generation_District_Heating_Networks.html
- [2] Upgrade-DH, 2019. Upgrading the performance of district heating networks. Technical and non-technical approaches. A Handbook.
- [3]D. Rutz 2019. picture taken from: Upgrading the performance of district heating networks. Technical and non-technical approaches. A Handbook.
- [all others] AGFW 2013: Technical Handbook

References & Contact

AGFW-Project GmbH

Project company for rationalisation, information & standardisation

Stresemannallee 30 60596 Frankfurt am Main Germany

E-mail: info@agfw.de Tel: +49 69 6304 - 247

www.agfw.de

